# Definition of Vector

Vectors are special objects that can be added together and multiplied by scalars to produce another object of the same kind. From an abstract mathematical viewpoint, any object that satisfies these two properties can be considered a vector.

Under this definition, geometric vectors, polynomials, audio signals, elements of Rn\mathbb{R}^n, and so on are all vectors.

# 2.1 Systems of Linear Equations

General form of a system of linear equations

a11x1++a1nxn=b1am1x1++amnxn=bn\begin{gathered} a_{11}x_1 + \cdots + a_{1n}x_n = b_1 \\\\ \vdots \\\\ a_{m1}x_1 + \cdots + a_{mn}x_n = b_n \end{gathered}

To give a systematic approach to solving linear equations, we introduce a compact notation:

\begin{gather} \begin{bmatrix} a_{11} \\\\ \vdots \\\\ a_{m1} \end{bmatrix}x_1 + \begin{bmatrix} a_{12} \\\\ \vdots \\\\ a_{m2} \end{bmatrix}x_2 + \cdots + \begin{bmatrix} a_{1n} \\\\ \vdots \\\\ a_{mn} \end{bmatrix}x_n = \begin{bmatrix} b_{1} \\\\ \vdots \\\\ b_{m} \end{bmatrix}\Leftrightarrow\\[2em] \begin{bmatrix} a_{11} & \cdots & a_{1n} \\\\ \vdots & & \vdots \\\\ a_{m1} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} x_{1} \\\\ \vdots \\\\ x_{n} \end{bmatrix} = \begin{bmatrix} b_{1} \\\\ \vdots \\\\ b_{m} \end{bmatrix} \end{gather}

# 2.2 Matrices

Hardmard Product
An element-wise operation on matrix elements, i.e., cij=aijbijc_{ij} = a_{ij}b_{ij}.

# 2.3 Solving Systems of Linear Equations

# 2.3.1 Particular and General Solution

Consider the system of equations:

\begin{equation} \begin{bmatrix} 1 & 0 & 8 & -4\\\\ 0 & 1 & 2 & 12 \end{bmatrix} \begin{bmatrix} x_1\\\\ x_2\\\\ x_3\\\\ x_4 \end{bmatrix} = \begin{bmatrix} 42\\\\ 8 \end{bmatrix} \end{equation}

We want to find scalars x1,,x4x_1, \dots, x_4, such that i=14xici=b\sum_{i = 1}^4 x_i\boldsymbol{c}_i = \boldsymbol{b}, where ci\boldsymbol{c}_i is the iith coloum of the matrix.

We find that

b=[428]=42[10]+8[01].\boldsymbol{b} = \begin{bmatrix} 42 \\\\ 8 \end{bmatrix} = 42\begin{bmatrix} 1 \\\\ 0 \end{bmatrix} + 8\begin{bmatrix} 0 \\\\ 1 \end{bmatrix}\text{.}

Thus one solution is [42,8,0,0]T[42, 8, 0, 0]^T, i.e., a paticular solution/ special solution.

We express the third column using the first two columns:

[82]=8[10]+2[01]\begin{bmatrix} 8 \\\\ 2 \end{bmatrix} = 8\begin{bmatrix} 1 \\\\ 0 \end{bmatrix} + 2\begin{bmatrix} 0 \\\\ 1 \end{bmatrix}

so that 8c1+2c2c3+0c4=08\boldsymbol{c}_1 + 2\boldsymbol{c}_2 - \boldsymbol{c}_3 + 0\boldsymbol{c}_4 = \boldsymbol{0}. Assume λ1R\lambda_1\in \mathbb{R}, we have

\begin{equation} \begin{bmatrix} 1 & 0 & 8 & -4\\\\ 0 & 1 & 2 & 12 \end{bmatrix}\left(\lambda_1 \begin{bmatrix} x_1\\\\ x_2\\\\ x_3\\\\ x_4 \end{bmatrix}\right) = \lambda_1(8\boldsymbol{c}_1 + 2\boldsymbol{c}_2 - \boldsymbol{c}_3) = \boldsymbol{0} \end{equation}

Following the same line of reasoning, we express the fourth column of the matrix using the first two columns and get:

\begin{equation} \begin{bmatrix} 1 & 0 & 8 & -4\\\\ 0 & 1 & 2 & 12 \end{bmatrix}\left(\lambda_2 \begin{bmatrix} x_1\\\\ x_2\\\\ x_3\\\\ x_4 \end{bmatrix}\right) = \lambda_2(-4\boldsymbol{c}_1 + 12\boldsymbol{c}_2 - \boldsymbol{c}_4) = \boldsymbol{0} \end{equation}

Then we get the general solution:

x=[42800]+λ1[8210]+λ2[41201],λ1,λ2R\boldsymbol{x} = \begin{bmatrix} 42 \\\\ 8 \\\\ 0 \\\\ 0 \end{bmatrix} + \lambda_1\begin{bmatrix} 8 \\\\ 2 \\\\ -1 \\\\ 0 \end{bmatrix} + \lambda_2\begin{bmatrix} -4 \\\\ 12 \\\\ 0 \\\\ -1 \end{bmatrix}, \;\;\lambda_1, \lambda_2 \in \mathbb{R}

General Approach

  1. Find a particular solution to Ax=b\boldsymbol{Ax}=\boldsymbol{b}.
  2. Find all solutions to Ax=0\boldsymbol{Ax} = \boldsymbol{0}.
  3. Combine the solutions from steps 1. and 2. to the general solution.

# 2.3.2 Elementary Transformations

  • Exchange of two equations (rows in the matrix representing the system
    of equations)
  • Multiplication of an equation (row) with a constant λR\\lambda\in\mathbb{R} \backslash \\
  • Addition of two equations (rows)

Augmented Matrix
Assume Ax=b\boldsymbol{Ax}=\boldsymbol{b}, then we define the augmented matrix [Ab][\boldsymbol{A} | \boldsymbol{b}].

Row-Echelon Form

  • All rows that contain only zeros are at the bottom of the matrix; correspondingly, all rows that contain at least one nonzero element are on top of rows that contain only zeros.
  • Looking at nonzero rows only, the first nonzero number from the left
    (also called the pivot or the leading coefficient) is always strictly to the right of the pivot of the row above it.

Basic and Free Variables
The variables corresponding to the pivots in the row-echelon form are called basic variables and the other variables are free variables. (Pivots are basic variables and the others are free variables.)

Obtaining a Particular Solution
Assume we have simplified augmented matrix:

[121110001132000121000000]\begin{bmatrix} \begin{array}{ccccc|c} 1 & -2 & 1 & -1 & 1 & 0 \\\\ 0 & 0 & 1 & -1 & 3 & -2 \\\\ 0 & 0 & 0 & 1 & -2 & 1 \\\\ 0 & 0 & 0 & 0 & 0 & 0 \end{array} \end{bmatrix}

We have b=i=1Pλipi\boldsymbol{b} = \sum_{i = 1}^P \lambda_i \boldsymbol{p}_i, where pi\boldsymbol{p}_i are the pivot columns. The λi\lambda_i are determined easiest if we start with the rightmost pivot column and work our way to the left.

λ1p1+λ2p3+λ3p4=bλ1[1000]+λ2[1100]+λ3[1110]=[0210]\lambda_1\boldsymbol{p}_1 + \lambda_2\boldsymbol{p}_3 + \lambda_3\boldsymbol{p}_4 = \boldsymbol{b}\Leftrightarrow\\[1em] \lambda_1\begin{bmatrix} 1\\\\ 0\\\\ 0\\\\ 0 \end{bmatrix}+\lambda_2\begin{bmatrix} 1\\\\ 1\\\\ 0\\\\ 0 \end{bmatrix}+\lambda_3\begin{bmatrix} -1 \\\\ -1 \\\\ 1 \\\\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\\\ -2 \\\\ 1\\\\ 0 \end{bmatrix}

We can get λ3=1,λ2=1,λ1=2\lambda_3 = 1, \lambda_2 = -1, \lambda_1 = 2. Therefore we get the paticular solution x=[2,0,1,1,0]T\boldsymbol{x} = [2, 0, -1, 1, 0]^T.

Reduced Row Echelon Form
An equation system is in reduced row-echelon form (also: row-reduced echelon form or row canonical form) if

  • It is in row-echelon form.
  • Every pivot is 1.
  • The pivot is the only nonzero entry in its column.

Gaussian Elimination
Gaussian elimination is an algorithm that performs elementary transformations to bring a system of linear equations into reduced row-echelon form.

Obtain Solutions to Ax=0\boldsymbol{Ax} = \boldsymbol{0}
Assume we have a reduced row echelon form matrix:

\begin{equation} \boldsymbol{A} = \begin{bmatrix} \boldsymbol{1} & 3 & 0 & 0 & 3 \\\\ 0 & 0 & \boldsymbol{1} & 0 & 9 \\\\ 0 & 0 & 0 & \boldsymbol{1} & -4 \end{bmatrix} \end{equation}

The key idea for finding the solutions of Ax=0\boldsymbol{Ax} = \boldsymbol{0} is to look at the nonpivot columns, which we will need to express as a (linear) combination of the pivot columns.
Consider the second column, we have

3p1p2=03\boldsymbol{p}_1 - \boldsymbol{p}_2 = \boldsymbol{0}

Consider the fifth column, we have

3p1+9p34p4p5=03\boldsymbol{p}_1 + 9\boldsymbol{p}_3 - 4\boldsymbol{p}_4 - \boldsymbol{p}_5 = \boldsymbol{0}

Therefore, all solutions of Ax=0\boldsymbol{Ax} = \boldsymbol{0} are given by

x=λ1[31000]+λ2[30941],λ1,2R\boldsymbol{x} = \lambda_1\begin{bmatrix} 3 \\\\ -1 \\\\ 0 \\\\ 0\\\\ 0 \end{bmatrix} + \lambda_2\begin{bmatrix} 3 \\\\ 0 \\\\ 9 \\\\ -4 \\\\ -1 \end{bmatrix}, \;\;\lambda_{1,2} \in \mathbb{R}

# 2.3.3 The Minus-1 Trick

Minus-1 Trick

\begin{equation} \boldsymbol{A} = \begin{bmatrix} \boldsymbol{1} & 3 & 0 & 0 & 3 \\\\ 0 & 0 & \boldsymbol{1} & 0 & 9 \\\\ 0 & 0 & 0 & \boldsymbol{1} & -4 \end{bmatrix} \end{equation}

We now augment this matrix to a 5×55\times 5 matrix by adding rows of the
form [00100][0\;\cdots\;0\;-1\;\;0\; \cdots\;0] at the places where the pivots on the diagonal are missing and obtain:

A~=[1300301000001090001400001]\tilde{\boldsymbol{A}} = \begin{bmatrix} 1 & 3 & 0 & 0 & 3 \\\\ \boldsymbol{0} & \boldsymbol{-1} & \boldsymbol{0}& \boldsymbol{0}& \boldsymbol{0}\\ 0 & 0 & 1 & 0 & 9 \\\\ 0 & 0 & 0 & 1 & -4 \\\\ \boldsymbol{0} & \boldsymbol{0}& \boldsymbol{0}& \boldsymbol{0}& \boldsymbol{-1}\\ \end{bmatrix}

From this form, we can immediately read out the solutions of Ax=0\boldsymbol{Ax} = \boldsymbol{0} by
taking the columns of A~\tilde{\boldsymbol{A}}, which contain 1-1 on the diagonal:

x=λ1[31000]+λ2[30941],λ1,2R\boldsymbol{x} = \lambda_1\begin{bmatrix} 3 \\\\ -1 \\\\ 0 \\\\ 0\\\\ 0 \end{bmatrix} + \lambda_2\begin{bmatrix} 3 \\\\ 0 \\\\ 9 \\\\ -4 \\\\ -1 \end{bmatrix}, \;\;\lambda_{1,2} \in \mathbb{R}

These columns form a basis (Section 2.6.1) of the solution space of Ax=0\boldsymbol{Ax} = \boldsymbol{0}, which we will later call the kernel or null space (see Section 2.7.3).

Calculating the Inverse
Using elementary transformation, we can get:

[AIn][InA1]\left[\boldsymbol{A} | \boldsymbol{I}_n\right]\leadsto \cdots \leadsto \left[\boldsymbol{I}_n | \boldsymbol{A}^{-1}\right]

# 2.3.4 Algorithms for Solving a System of Linear Equations

When there is no solution, we need to resort to approximate
solutions. One way to solve the approximate problem is using the approach of linear regression.

Moore-Penrose pseudo-inverse

Ax=bATAx=ATbx=(ATA)1ATb\boldsymbol{Ax} = \boldsymbol{b} \Leftrightarrow \boldsymbol{A}^T\boldsymbol{Ax} = \boldsymbol{A}^T\boldsymbol{b} \Leftrightarrow \boldsymbol{x} = (\boldsymbol{A}^T\boldsymbol{A})^{-1}\boldsymbol{A}^T\boldsymbol{b}

The Moore-Penrose pseudo-inverse (ATA)1AT(\boldsymbol{A}^T\boldsymbol{A})^{-1}\boldsymbol{A}^T determine the solution, which also corresponds to the minimum norm least-squares solution.

Disadvantage
It requires many computations for the matrix-matrix product and computing the inverse of ATA\boldsymbol{A}^T\boldsymbol{A}. Moreover, for reasons of numerical precision it is generally not recommended to compute the inverse or pseudo-inverse.

In practice, systems of many linear equations are solved indirectly, by either stationary iterative methods, such as the Richardson method, the Jacobi method, the Gauss-Seidel method, and the successive over-relaxation method, or Krylov subspace methods, such as conjugate gradients, generalized minimal residual, or biconjugate gradients.

# 2.4 Vector Spaces

# 2.4.1 Groups

Definition (Group)
Consider a set G\mathcal{G} and an operation :G×GG\otimes: \mathcal{G} \times \mathcal{G} \to \mathcal{G} defined on G\mathcal{G}. Then G:=(G,)G:=(\mathcal{G}, \otimes) is called a group if the following hold:

  1. Closure of G\mathcal{G} under \otimes: x,yG:xyG\forall x, y \in \mathcal{G}: x\otimes y \in \mathcal{G}.
  2. Associativity: x,y,zG:(xy)z=x(yz)\forall x, y, z \in \mathcal{G}: (x \otimes y) \otimes z = x \otimes (y \otimes z).
  3. Neutral element: eGxG:xe=xandex=x\exists e \in \mathcal{G}\forall x \in \mathcal{G}: x\otimes e = x\;\text{and}\;e \otimes x = x.
  4. Inverse element: xGyG:xy=eandyx=e\forall x \in \mathcal{G} \exists y \in \mathcal{G}: x\otimes y = e\;\text{and}\; y \otimes x = e (ee is the neutral element and yy is usually denoted as x1x^{-1}).

Abelian group
If additionally x,yG:xy=yx\forall x,y\in \mathcal{G}: x \otimes y = y \otimes x, then G=(G,)G = (\mathcal{G}, \otimes) is an Abelian group.

Definition (General Linear Group)
The set of regular (invertible) matrices ARn×n\boldsymbol{A} \in \mathbb{R}^{n \times n} is a group with respect to matrix multiplication and is called general linear group GL(n,R)GL(n, \mathbb{R}). However, since matrix multiplication is not commutative, the group is not Abelian.

# 2.4.2 Vector Spaces

Definition (Vector Space)
A real-valued vector space V=(V,+,)V = (\mathcal{V}, +, \cdot) is a set V\mathcal{V} with inner operation ++ and outer operation \cdot

+:V×VV:R×VV\begin{aligned} +&:\mathcal{V} \times \mathcal{V} \rightarrow \mathcal{V}\\ \cdot&: \mathbb{R} \times \mathcal{V} \to \mathcal{V} \end{aligned}

where

  1. (V,+)(\mathcal{V}, +) is an Abelian group.
  2. Distributivity:
    1. \forall \lambda \in \mathbb{R}, \boldsymbol{x}, \boldsymbol{y} \in \mathcal{V}:\lambda\cdot(\boldsymbol{x}+\boldsymbol{y}) = \lambda\cdot\boldsymbol{x} + \lambda\cdot\boldsymbol
    2. \forall \lambda, \psi \in \mathbb{R}, \boldsymbol{x} \in \mathcal{V}: (\lambda + \psi)\cdot \boldsymbol{x} = \lambda\cdot \boldsymbol{x} + \psi\cdot\boldsymbol
  3. Associativity (outer operation): \forall\lambda,\psi\in\mathbb{R}, \boldsymbol{x}\in \mathcal{V}: \lambda\cdot(\psi\cdot\boldsymbol{x}) = (\lambda\psi)\cdot\boldsymbol
  4. Neutral element with respect to the outer operation: \forall\boldsymbol{x} \in \mathcal{V}: 1\cdot \boldsymbol{x} = \boldsymbol

Multiplication by scalars and scalar product is different! (e.g.: x,yV,λR,λxV\boldsymbol{x}, \boldsymbol{y} \in \mathcal{V}, \lambda\in\mathbb{R}, \lambda\boldsymbol{x}\in\mathcal{V} is a multiplication by scalars while xTyR\boldsymbol{x}^T\boldsymbol{y}\in\mathbb{R} is a scalar product)

# 2.4.3 Vector Subspaces

Definition (Vector Subspace)
Let V=(V,+,)V = (\mathcal{V}, +, \cdot) be a vector space and UV,U\mathcal{U} \in \mathcal{V}, \mathcal{U} \ne \emptyset. Then U=(U,+,)U = (\mathcal{U}, +, \cdot) is called vector subspace of VV (or linear subspace) if UU is a vector space with the vector space operation ++ and \cdot restricted to U×U\mathcal{U}\times\mathcal{U} and R×U\mathbb{R}\times\mathcal{U}. We write UVU \in V to denote a subspace UU of VV. To determine (U,+,)(\mathcal{U}, +, \cdot) is a subspace of VV we still do need to show

  1. U\mathcal{U}\ne\emptyset, in particular: 0U\boldsymbol{0}\in\mathcal{U}.
  2. Closure of U\mathcal{U}:
    a. With respect to the outer operation: λRxU:λxU\forall\lambda\in\mathbb{R}\forall\boldsymbol{x}\in\mathcal{U}:\lambda\boldsymbol{x}\in\mathcal{U}.
    b. With respect to the inner operation:x,yU:x+yU\forall\boldsymbol{x},\boldsymbol{y}\in\mathcal{U}:\boldsymbol{x}+\boldsymbol{y}\in\mathcal{U}.

Some Conclutions

  • For every vector space VV, the trivial subspaces are VV itself and 0\\{\boldsymbol{0}\\}.
  • The solution set of a homogeneous system of linear equations Ax=0\boldsymbol{Ax} = \boldsymbol{0} with nn unknowns x=[x1,x2,,xn]T\boldsymbol{x} = [x_1, x_2, \cdots,x_n]^T is a subspace of Rn\mathbb{R}^n.
  • The solution of an inhomogeneous system of linear equations Ax=b,b0\boldsymbol{Ax} = \boldsymbol{b}, \boldsymbol{b}\ne\boldsymbol{0} is not a subspace of Rn\mathbb{R}^n.
  • The intersection of arbitrarily many subspaces is a subspace itself.

# 2.5 Linear Independence

Definition (Linear Combination)
Consider a vector space VV and a finite number of vectors x1,,xkV\boldsymbol{x}_1,\dots,\boldsymbol{x}_k\in V. Then, every vV\boldsymbol{v}\in V of the form

v=λ1x1++λkxk=i=1kλixiV\boldsymbol{v} = \lambda_1\boldsymbol{x}_1+\cdots+\lambda_k\boldsymbol{x}_k=\sum_{i = 1}^{k}\lambda_i\boldsymbol{x}_i\in V

with λ1,,λkR\lambda_1,\dots,\lambda_k\in\mathbb{R} is a linear combination of the vectors x1,,xk\boldsymbol{x}_1,\dots,\boldsymbol{x}_k.

Definition (Linear (In)dependence)
Consider a vector space VV with kNk\in\mathbb{N} and x_1,,x_kV\boldsymbol{x}\_1,\dots,\boldsymbol{x}\_k\in V. If there is a non-trivial linear combination, such that 0=i=1kλixi\boldsymbol{0} = \sum_{i = 1}^k\lambda_i\boldsymbol{x}_i with at least one λi0\lambda_i\ne0, the vectors x1,,xk\boldsymbol{x}_1,\dots,\boldsymbol{x}_k are linear dependent. If only the trivial solution exists, i.e., λ1==λk=0\lambda_1 = \cdots = \lambda_k = 0, the vectors x1,,xk\boldsymbol{x}_1,\dots,\boldsymbol{x}_k are linear independent.

Important properties

  • If at least one of the vectors x1,,xk\boldsymbol{x}_1,\dots,\boldsymbol{x}_k is 0\boldsymbol{0} then they are linearly dependent. The same holds if two vectors are identical.
  • The vectors x1,,xk:xi0,i=1,,k,k2\\{\boldsymbol{x}_1,\dots,\boldsymbol{x}_k:\boldsymbol{x}_i\ne0, i = 1,\dots, k\\}, k \ge 2, are linear independent if and only if (at least) one of them is a linear combination of the others. In particular, if one vector is a multiple of another vector, i.e., xi=xj,λR\boldsymbol{x}_i = \boldsymbol{x}_j,\lambda\in\mathbb{R}, then the set x1,,xk:xi0,i=1,,k\\{\boldsymbol{x}_1,\dots,\boldsymbol{x}_k:\boldsymbol{x}_i\ne0, i = 1,\dots, k\\} is linearly dependent.
  • A practical way of checking whether vectors kNk\in\mathbb{N} and x1,,xkV\boldsymbol{x}_1,\dots,\boldsymbol{x}_k\in V are linearly independent is to use Gaussian elimination: Write all vectors as columns of a matrix A\boldsymbol{A} and perform Gaussian elimination until the matrix is in row echelon form (the reduced row-echelon form is unnecessary here):
    • The pivot columns indicate the vectors, which are linearly independent of the vectors on the left. Note that there is an ordering of vectors when the matrix is built.
    • The non-pivot columns can be expressed as linear combinations of the pivot columns on their left.
      All column vectors are linearly independent if and only if all columns are pivot columns. If there is at least one non-pivot column, the columns (and, therefore, the corresponding vectors) are linearly dependent.

Consider a vector space VV with kk linearly independent vectors b1,,bk\boldsymbol{b}_1, \cdots, \boldsymbol{b}_k and mm linear combinations

x1=i=1kλi1bi,xm=i=1kλimbi.\begin{gathered} \boldsymbol{x}_1 = \sum_{i = 1}^k\lambda_{i1}\boldsymbol{b}_i,\\\\ \vdots\\\\ \boldsymbol{x}_m = \sum_{i = 1}^k\lambda_{im}\boldsymbol{b}_i. \end{gathered}

Defining B=[b1,,bk]\boldsymbol{B} = [\boldsymbol{b}_1, \cdots, \boldsymbol{b}_k] as the matrix whose columns are the linearly independent vectors b1,,bk\boldsymbol{b}_1, \cdots, \boldsymbol{b}_k, we have:

xj=Bλj,λj=[λ1jλkj],j=1,,m.\boldsymbol{x}_j = \boldsymbol{B}\boldsymbol{\lambda}_j,\;\;\boldsymbol{\lambda}_j = \begin{bmatrix} \lambda_{1j}\\\\ \vdots\\\\ \lambda_{kj} \end{bmatrix},\;\;j = 1, \cdots, m.

To test whether x_1,,x_m\boldsymbol{x}\_1,\dots,\boldsymbol{x}\_m is linearly independent, we follow the general approach of testing whether j=1mψjxj=0\sum_{j = 1}^m \psi_j\boldsymbol{x}_j = \boldsymbol{0}, i.e., to test whether

j=1mψjxj=j=1mψjBλj=Bj=1mψjλj=0.\sum_{j = 1}^m\psi_j\boldsymbol{x}_j = \sum_{j = 1}^m\psi_j\boldsymbol{B}\boldsymbol{\lambda}_j = \boldsymbol{B}\sum_{j = 1}^m\psi_j\boldsymbol{\lambda}_j = \boldsymbol{0}.

This means that x1,,xm\\{\boldsymbol{x}_1,\dots,\boldsymbol{x}_m\\} are linearly independent if and only if the column vectors λ1,,λm\\{\boldsymbol{\lambda}_1, \cdots, \boldsymbol{\lambda}_m\\} are linearly independent.

In a vector space VV, mm linear combinations of kk vectors x1,,xk\boldsymbol{x}_1,\dots,\boldsymbol{x}_k are linearly dependent if m>km > k.
But why?

# 2.6 Basis and Rank

# 2.6.1 Generating Set and Basis

Definition (Generating Set and Span)
Consider a vector space V=(V,+,)V = (\mathcal{V}, +, \cdot) and set of vectors A=x1,,xkV\mathcal{A} = \\{\boldsymbol{x}_1, \dots, \boldsymbol{x}_k\\} \subseteq \mathcal{V}. If every vector vV\boldsymbol{v} \in \mathcal{V} can be expressed as a linear combination of x1,,xk\boldsymbol{x}_1, \dots, \boldsymbol{x}_k, A\mathcal{A} is called a generating set of VV. The set of all linear combinations of vectors in A\mathcal{A} is called the span of A\mathcal{A}. If A\mathcal{A} spans the vector space VV, we write V=span[A]V = \text{span}[\mathcal{A}] or V=span[x1,,xk]V = \text{span}[\boldsymbol{x}_1, \dots, \boldsymbol{x}_k].

Definition (Basis)
Consider a vector space V=(V,+,)V = (\mathcal{V}, +, \cdot) and AV\mathcal{A} \subseteq \mathcal{V}. A generating set A\mathcal{A} of VV is called minimal if there exists no smaller set A~AV\tilde{\mathcal{A}} \subsetneq \mathcal{A} \subseteq V that spans VV. Every linearly independent generating set of VV is minimal and is called a basis of VV.

Properties of Basis
Let V=(V,+,)V = (\mathcal{V}, +, \cdot) be a vector space and BV,B\mathcal{B} \subseteq \mathcal{V}, \mathcal{B} \neq \emptyset. Then, the following statements are equivalent:

  • B\mathcal{B} is a basis of V\mathcal{V}.
  • B\mathcal{B} is a minimal generating set.
  • B\mathcal{B} is a maximal linearly independent set of vectors in VV, i.e., adding any other vector to this set will make it linearly dependent.
  • Every vector xV\boldsymbol{x} \in \mathcal{V} is a linear combination of vectors from B\mathcal{B}, and every linear combination is unique, i.e., with

x=i=1kλibi=i=1kψibi\boldsymbol{x} = \sum_{i = 1}^k \lambda_i \boldsymbol{b}_i = \sum_{i = 1}^k \psi_i \boldsymbol{b}_i

and λi,ψiR,biB\lambda_i, \psi_i \in \mathbb{R}, \boldsymbol{b}_i \in \mathcal{B}, it follows that λi=ψi,i=1,,k\lambda_i = \psi_i, i = 1, \dots, k.

Definition (Basis Vector)
Every vector space VV possesses many different bases. However, all bases possess the same number of elements, the basis vectors.

Definition (Dimension)
The dimension of VV is the number of basis vectors of VV, denoted as dim(V)\text{dim}(V). If UVU \subseteq V, i.e., UU is a subspace of VV, then dim(U)dim(V)\text{dim}(U)\le \text{dim}(V) and dim(U)=dim(V)\text{dim}(U) = \text{dim}(V) if and only if U=VU = V. Intuitively, the dimension of a vector space can be thought of as the number of independent directions in this vector space. The dimension of a vector space is not necessarily the number of elements in a vector. For instance, the vector space V=span[01]V = \text{span}\begin{bmatrix} 0\\\\1 \end{bmatrix} is one-dimensional, although the basis vector possesses two elements.

Get a basis of a subspace
A basis of a subspace U=span[x1,,xm]RnU = \text{span}[\boldsymbol{x}_1, \dots, \boldsymbol{x}_m] \subseteq \mathbb{R}^n can be found by excuting the following steps:

  1. Write the spanning vectors as columns of a matrix A\boldsymbol{A}.
  2. Determine the row-echelon form of A\boldsymbol{A}.
  3. The spanning vectors associated with the pivot columns are a basis of UU.

# 2.6.2 Rank

Definition (Rank)
The number of linearly independent columns of a matrix ARm×n\boldsymbol{A} \in \mathbb{R}^{m\times n} equals the number of linearly independent rows and is called the rank of A\boldsymbol{A} and is denoted by rk(A)\text{rk}(\boldsymbol{A}).

Important properties

  • rk(A)=rk(AT)\text{rk}(\boldsymbol{A}) = \text{rk}(\boldsymbol{A}^T), i.e., the column rank equals the row rank.
  • The columns of ARm×n\boldsymbol{A} \in \mathbb{R}^{m \times n} span a subspace URmU \subseteq \mathbb{R}^m with dim(U)=rk(A)\text{dim}(U) = \text{rk}(\boldsymbol{A}). This subspace is also called image or range. A basis of UU can be found by applying Gaussian elimination to A\boldsymbol{A} to identify the pivot columns.
  • The rows of ARm×n\boldsymbol{A} \in \mathbb{R}^{m \times n} span a subspace WRnW \subseteq \mathbb{R}^n with dim(U)=rk(A)\text{dim}(U) = \text{rk}(\boldsymbol{A}). A basis of WW can be found by applying Gaussian elimination to AT\boldsymbol{A}^T.
  • For all ARn×n\boldsymbol{A} \in \mathbb{R}^{n \times n}, rk(A)=n\text{rk}(\boldsymbol{A}) = n if and only if A\boldsymbol{A} is regular (invertible).
  • For all ARm×n\boldsymbol{A} \in \mathbb{R}^{m \times n} and all bRn\boldsymbol{b} \in \mathbb{R}^n it holds that the linear equation system Ax=b\boldsymbol{A}\boldsymbol{x} = \boldsymbol{b} can be solved if and only if rk(A)=rk(Ab)\text{rk}(\boldsymbol{A}) = \text{rk}(\boldsymbol{A} \|\boldsymbol{b}).
  • For all ARm×n\boldsymbol{A} \in \mathbb{R}^{m \times n}, the subspace of solutions for Ax=0\boldsymbol{Ax} = \boldsymbol{0} possesses dimension nrk(A)n - \text{rk}(\boldsymbol{A}). This subspace is called the kernel or the null space.
  • A matrix ARm×n\boldsymbol{A} \in \mathbb{R}^{m \times n} has full rank if rk(A)=min(m,n)\text{rk}(\boldsymbol{A}) = \min(m, n). A matrix is said to be rank deficient if it does not have full rank.
更新于 阅读次数

请我喝[茶]~( ̄▽ ̄)~*

John G 微信支付

微信支付

John G 支付宝

支付宝